NAG Toolbox for MATLAB

f07hh

1 Purpose

f07hh returns error bounds for the solution of a real symmetric positive-definite band system of linear equations with multiple right-hand sides, AX = B. It improves the solution by iterative refinement, in order to reduce the backward error as much as possible.

2 Syntax

[x, ferr, berr, info] = f07hh(uplo, kd, ab, afb, b, x, 'n', n, 'nrhs_p',
$$nrhs_p$$
)

3 Description

f07hh returns the backward errors and estimated bounds on the forward errors for the solution of a real symmetric positive-definite band system of linear equations with multiple right-hand sides AX = B. The function handles each right-hand side vector (stored as a column of the matrix B) independently, so we describe the function of f07hh in terms of a single right-hand side b and solution x.

Given a computed solution x, the function computes the *component-wise backward error* β . This is the size of the smallest relative perturbation in each element of A and b such that x is the exact solution of a perturbed system

$$|\delta a_{ij}| \le \beta |a_{ij}| \qquad \text{and} \qquad |\delta b_i| \le \beta |b_i|.$$

Then the function estimates a bound for the *component-wise forward error* in the computed solution, defined by:

$$\max_{i} |x_i - \hat{x}_i| / \max_{i} |x_i|$$

where \hat{x} is the true solution.

For details of the method, see the F07 Chapter Introduction.

4 References

Golub G H and Van Loan C F 1996 Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5 Parameters

5.1 Compulsory Input Parameters

1: **uplo – string**

Indicates whether the upper or lower triangular part of A is stored and how A is to be factorized.

$$uplo = 'U'$$

The upper triangular part of A is stored and A is factorized as $U^{T}U$, where U is upper triangular.

$$uplo = 'L'$$

The lower triangular part of A is stored and A is factorized as LL^{T} , where L is lower triangular.

Constraint: uplo = 'U' or 'L'.

[NP3663/21] f07hh.1

f07hh NAG Toolbox Manual

2: kd - int32 scalar

 k_d , the number of superdiagonals or subdiagonals of the matrix A.

Constraint: $\mathbf{kd} \geq 0$.

3: $ab(ldab_{\bullet}*) - double array$

The first dimension of the array ab must be at least kd + 1

The second dimension of the array must be at least $max(1, \mathbf{n})$

The n by n original symmetric positive-definite band matrix A as supplied to f07hd.

4: **afb(ldafb,*)** – **double array**

The first dimension of the array **afb** must be at least kd + 1

The second dimension of the array must be at least $max(1, \mathbf{n})$

The Cholesky factor of A, as returned by f07hd.

5: b(ldb,*) - double array

The first dimension of the array **b** must be at least $max(1, \mathbf{n})$

The second dimension of the array must be at least max(1, nrhs_p)

The n by r right-hand side matrix B.

6: x(ldx,*) – double array

The first dimension of the array \mathbf{x} must be at least $\max(1, \mathbf{n})$

The second dimension of the array must be at least max(1, nrhs p)

The n by r solution matrix X, as returned by f07he.

5.2 Optional Input Parameters

1: n - int32 scalar

Default: The second dimension of the array ab.

n, the order of the matrix A.

Constraint: $\mathbf{n} \geq 0$.

2: nrhs p - int32 scalar

Default: The second dimension of the array **b** The second dimension of the array \mathbf{x} .

r, the number of right-hand sides.

Constraint: $\mathbf{nrhs}_{\mathbf{p}} \geq 0$.

5.3 Input Parameters Omitted from the MATLAB Interface

ldab, ldafb, ldb, ldx, work, iwork

5.4 Output Parameters

1: $\mathbf{x}(\mathbf{ldx},*) - \mathbf{double} \ \mathbf{array}$

The first dimension of the array \mathbf{x} must be at least $\max(1, \mathbf{n})$

The second dimension of the array must be at least max(1, nrhs p)

f07hh.2 [NP3663/21]

The improved solution matrix X.

2: ferr(*) - double array

Note: the dimension of the array **ferr** must be at least $max(1, nrhs_p)$.

ferr(j) contains an estimated error bound for the jth solution vector, that is, the jth column of X, for j = 1, 2, ..., r.

3: berr(*) - double array

Note: the dimension of the array **berr** must be at least $max(1, nrhs_p)$.

berr(j) contains the component-wise backward error bound β for the jth solution vector, that is, the jth column of X, for j = 1, 2, ..., r.

4: info – int32 scalar

info = 0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

```
info = -i
```

If info = -i, parameter i had an illegal value on entry. The parameters are numbered as follows:

1: uplo, 2: n, 3: kd, 4: nrhs_p, 5: ab, 6: ldab, 7: afb, 8: ldafb, 9: b, 10: ldb, 11: x, 12: ldx, 13: ferr, 14: berr, 15: work, 16: iwork, 17: info.

It is possible that **info** refers to a parameter that is omitted from the MATLAB interface. This usually indicates that an error in one of the other input parameters has caused an incorrect value to be inferred.

7 Accuracy

The bounds returned in **ferr** are not rigorous, because they are estimated, not computed exactly; but in practice they almost always overestimate the actual error.

8 Further Comments

For each right-hand side, computation of the backward error involves a minimum of 8nk floating-point operations. Each step of iterative refinement involves an additional 12nk operations. This assumes $n \gg k$. At most five steps of iterative refinement are performed, but usually only one or two steps are required.

Estimating the forward error involves solving a number of systems of linear equations of the form Ax = b; the number is usually 4 or 5 and never more than 11. Each solution involves approximately 4nk operations.

The complex analogue of this function is f07hv.

9 Example

[NP3663/21] f07hh.3

f07hh NAG Toolbox Manual

```
9.31, 30.81;
-5.24, -25.82;
11.83, 22.9];
11.83, 22.9];

x = [5, -2.0000000000000002;

-2.000000000000001, 6.00000000000004;

-3.00000000000001, -0.99999999999956;

0.9999999999994, 4.00000000000002];

[xOut, ferr, berr, info] = f07hh(uplo, kd, ab, afb, b, x)
xOut =
                       -2.0000
        5.0000
      -2.0000
                        6.0000
      -3.0000
                      -1.0000
       1.0000
                      4.0000
ferr =
      1.0e-13 *
        0.2082
        0.3182
berr =
      1.0e-16 *
        0.8864
        0.9208
info =
                     0
```

f07hh.4 (last) [NP3663/21]